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Abstract. Available Skyrme parametrizations with hyperons are examined from the point of view of their
suitability for applications to neutron stars. It is shown that the hyperons can attenuate or even remove
the problem of ferromagnetic instability common to (nearly) all Skyrme parametrizations of the nucleon-
nucleon interaction. At high density the results are very sensitive to the choice of the ΛΛ interaction. The
selected parameter sets are then used to obtain the resulting properties of both cold neutron stars and hot
protoneutron stars. The general features known from other models are recovered.

PACS. 97.60.Jd Neutron stars – 21.65.+f Nuclear matter – 21.30.-x Nuclear forces

1 Introduction

Skyrme parametrizations provide a simple tool for calcu-
lating the equation of state. Skyrme or Skyrme-inspired
models are often used in applications to neutron stars
with adapted versions which pay special attention to the
asymmetry properties. The Skyrme Lyon series [1] is the
most modern example of this approach and was designed
to reproduce saturation properties, the main properties of
nuclei as well as the results of simulations of pure neutron
matter.

In neutron stars in chemical equilibrium, hyperons ap-
pear at a threshold density about twice the nuclear satura-
tion density. A sizable hyperon fraction can be expected
to be present in the core of the most massive neutron
stars; the central density of the Skyrme Lyon series, for
example, is of the order of seven times saturation density
in the star with maximum mass and three to four times
saturation density in a 1.4 M¯ star.

Original Skyrme parametrizations did not take hyper-
ons into account. Balberg and Gal [2] have remedied the
fact with their parametrization of the energy density. It
could be argued, however, that the description of the nu-
cleon sector provided by this parametrization is rather
poor.

Rather than designing a new force in the hyperonic
sector with the purpose of describing neutron stars, an-
other possibility would be to restrict oneself to the nu-
merous available data sets which were fitted to nuclear
properties. This is the approach taken by Rikovska Stone
et al. [3], who recently tested 87 parameter sets for the
NN force in neutron star calculations.
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In the hyperonic sector there exist a few parametriza-
tions of the Lambda-Nucleon and Lambda-Lambda inter-
action fitted to the properties of hypernuclei, including
several well-tested sets by Lanskoy el al. [4,5] and an ear-
lier set by Fernandez et al. [6]. The present work can be
considered as an extension of the study of Rikovska Stone
et al. including the Λ-hyperon.

A general feature of Skyrme models in the np sec-
tor is that they show a ferromagnetic transition at rather
low density [7,8]. If present, such a transition, apart from
modifying the equation of state and chemical equilibrium,
could give rise to induced magnetic fields in rotating neu-
tron stars. It also plays a crucial role in calculations of the
neutrino mean free path in supernova and protoneutron
stars. Calculations of this parameter in non-relativistic
(Skyrme or Gogny) models of nuclear matter [9–11] thus
obtained that the cross-section diverges and the mean free
path drops to zero at the transition.

It remains an open issue whether this transition is gen-
uine or an artefact of the Skyrme model. While a free
Fermi gas eventually becomes ferromagnetic, the nuclear
correlations are known to play a crucial role. Most non-
relativistic calculations which take correlations into ac-
count, e.g. by solving the Brueckner-Hartree-Fock equa-
tions with modern bare NN potentials [12,13], concluded
that spin ordered matter was not favored energetically.
Relativistic mean-field models predict no ferromagnetic
transition; on the other hand, relativistic calculations in
the Hartree-Fock approximation by Bernardos et al. [14]
find a transition, albeit as a rather large density (4 nsat).
A recent work by Maruyama and Tatsumi [15], although
not putting forward a quantitative prediction, reaches a
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similar conclusion as to the importance of the Fock con-
tribution.

In this work we will take the viewpoint that the fer-
romagnetic transition, especially when appearing at such
low densities as 2-3 times saturation, is probably an arte-
fact of the Skyrme model, and will select among the avail-
able Skyrme parametrizations those which as far as pos-
sible avoid or delay the transition to higher densities.

This work includes the effects of temperature and neu-
trino trapping and can also be applied in hot protoneutron
stars.

A further motivation of the present study was to ob-
tain a model which would allow to calculate the neutrino-
baryon scattering rate in the hot protoneutron star formed
shortly after the supernova collapse. It was therefore nec-
essary to be able to calculate the Landau parameters in
the spin S = 1 channel. Besides determining the position
of an eventual ferromagnetic transition, the Landau pa-
rameters in the spin S = 1 channel play a central role
when calculating the axial response function in the ran-
dom phase approximation, which is the dominant contri-
bution to the neutrino-baryon scattering rate. This appli-
cation has been presented in a separate paper [16].

After a presentation of the available Skyrme
parametrizations in sect. 2, the following sections proceed
to select a few among them according to their suitability
for neutron star applications. Section 3 first examines the
threshold density for hyperon formation under the condi-
tions of β equilibrium. Section 4 presents a discussion of
the issue of ferromagnetism. The selected parameter sets
are used in sect. 5 to obtain the properties of the corre-
sponding neutron stars. In sect. 6 some approximations of
the model (neglect of µ, Σ−) are re-examined. The effect
of non-vanishing temperature and of a trapped neutrino
fraction are studied in sect. 7. The main results are col-
lected and discussed in the conclusion.

The formalism is kept to a minimum in the main text,
while all relevant formulae are gathered in the appendix.

2 Skyrme parametrizations of the hyperonic

sector

The usual Skyrme model of nuclear matter introduces the
nucleon-nucleon potential

VNN (r1 − r2) = t0 (1 + x0Pσ)δ(r1 − r2)

+
1

2
t1 (1 + x1Pσ)

[
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It can readily be generalized to include nucleon-
Lambda and Lambda-Lambda interaction potentials (see,

e.g., [4,5])
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The potentials normally also include spin orbit contribu-
tions. They are not explicited here since they will not be
used in the remainder of this paper.

The energy density is then obtained in the Hartree-
Fock approximation from

E = 〈ψ |H |ψ〉 with H =
∑

A=N,Λ

TA +
1

2

∑

A,B=N,Λ

VAB

= ENN + ENΛ + EΛΛ (4)

In homogeneous matter the wave functions are formed
from antisymmetrized plane wave states. The explicit ex-
pression of the energy density is given in the appendix.

In our search for some suitable sets of Skyrme
parametrizations we have tested 44 NN Skyrme forces
in combination with 13 parametrizations of the NΛ and
4 options for the ΛΛ forces. The NN forces were cho-
sen among: SIII, SkM*, SI′, SIII′, SV, RATP, SGI, SGII,
SLy230a, SLy2, SLy4, SLy5, SLy6, SLy7, SLy9, SLy10,
SkO, SkO′, SkS3, SkI1, SkI2, SkI3, SkI4, SkI5, Rs, Gs,
SkT4, SkT5, T6, SkP, Ska, MSka, SK272, SK255, Skz-0,
Skz-1, Skz-2, Skz-3, Skz-4, SkSc4, SkSC6, SkSc15, MSk7,
SKX. After demanding that these sets fulfill various con-
straints that will be discussed in detail in the next two
sections, only four NN forces were sorted out: the SLy10
force from the Skyrme-Lyon series [1], the modern SkI3
and SkI5 forces by Reinhard and Flocard [17] and the
older SV force by Beiner et al. [18].

For the nucleon-Λ interaction we have tried several pa-
rameter sets given by Lanskoy and Yamamoto [4,19] and
by Fernandez et al. [6]: The NΛ sets numbered from I to
V in [4] are named LYI-LYV here, the sets numbered from
1 to 6 in [19] are named YBZ1-YBZ6, other choices are
the SkSH1 and SkSH2 sets of [6] or to switch off the NΛ
interactions. Finally, Lanskoy gives in [5] three sets, SLL1,
SLL2, SLL3, for the ΛΛ interaction, or we can switch it off.

The parametrization of Lanskoy and Yamamoto [4]
was extracted from G-matrix calculations [20] performed
with the Jülich and Nijmegen potentials and were tested
on hypernuclei. Other NΛ and ΛΛ interactions were fit-
ted directly to hypernuclei data. The values given by Lan-
skoy and Yamamoto [4] assume that the nucleon sector
is parametrized by the SkM* or SIII interactions while
the parameter set of the Salamanca group [6] was used
together with the SkS3 interaction. Even though this is
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Table 1. Skyrme parameters for the NN interaction (t0 is given in MeV fm3, t1 and t2 in MeV fm5, t3 in MeV fm3+3α; the
other parameters are adimensional).

Model α t0 t1 t2 t3 x0 x1 x2 x3

SLy10 1/6 2506.77 430.98 −304.95 13826.41 1.0398 −0.6745 −1.0 1.6833
SkI3 1/4 −1762.88 561.608 −227.09 8106.2 0.3083 −1.1722 −1.0907 1.2926
SkI5 1/4 −1772.91 550.84 −126.685 8206.25 −0.1171 −1.3088 −1.0487 0.3410
SV 1 −1248.3 970.6 107.2 0. −0.17 0. 0. 1.

Table 2. Skyrme parameters for the NΛ interaction [4,19] (u0 is given in MeV fm3, u1 and u2 in MeV fm5, u3 in MeV fm3+3β ,
the other parameters are adimensional. VΛ is the potential felt by a Λ-hyperon in nuclear matter at saturation and is given in
MeV.).

Model β u0 u1 u2 u3 y0 y3 VΛ

LY-I 1/3 −476. 42. 23. 1514.1 −0.0452 −0.280 −27.62
LY-IV 1/3 −542.5 56.0 8.0 1387.9 −0.1534 0.1074 −28.17
YBZ-1 1 −349.0 67.61 37.39 2000. −0.108 0. −26.52
YBZ-5 1 −315.3 23.14 −23.14 2000 −0.109 0. −28.50
YBZ-6 1 −372.2 100.4 79.60 2000. −0.107 0. −24.98
SkSH1 – −176.5 −35.8 44.1 0 0 – −27.68

not fully consistent, we also used other more modern
parametrizations in the nucleon sector like the Skyrme
Lyon sets [1] in order to investigate the role of the ferro-
magnetic transition (see sect. 4).

Selected values of the parameter sets are listed in
tables 1, 2 and 3. For other parametrizations we refer
the reader to the exhaustive table published by Rikovska
Stone et al. in the case of the NN forces and the papers
of Lanskoy et al. and Fernandez et al. for the NΛ and ΛΛ
forces.

As this model only includes the Λ-hyperon, it appears
to be less complete than the model of Balberg and Gal [2]
which includes all the hyperons. As mentioned in the in-
troduction, we fixed our choice on the parametrization
by Lanskoy et al. because these authors provide the two-
particle potential rather than only the unpolarized energy
density. This leaves open the possibility of going beyond
the Hartree-Fock approximation and to investigate the re-
sponse functions of the matter at the RPA level.

It would be straightforward to extend the model to
take into account other hyperons such as the Σ−. Data
about the Σ− in nuclear matter however is rather scarce
and the author is not aware of an equivalent Skyrme
parametrization including the Σ at the same level of pre-
cision. One possibility would be to adjust Skyrme pa-
rameters to reproduce Brueckner calculations, e.g., using
density matrix expansion techniques. Indeed some data is
available from the work of Dabrowski [21], who extracts
the potential felt by a Σ− impurity in nuclear matter at
saturation density from Brueckner calculations performed
with the Nijmegen potentials. On the other hand, the ne-
glect of the Σ-hyperon is sometimes justified from the
very lack of observation of Σ hypernuclei, where this fact
is interpreted as indicating that the Σ-nucleon force is in
fact repulsive. In that case, β-equilibrium equations would
predict that the threshold forΣ-hyperon formation in neu-
tron stars is shifted to very large densities (see, e.g., [2,
21–23]).

Table 3. Skyrme parameters for the ΛΛ interaction [5] (λ0 is
given in MeV fm3 and λ1 in MeV fm5).

Model λ0 λ1

SLL1 −312.6 57.5
SLL2 −437.7 240.7
SLL3 −831.8 922.9

We will use the model of Balberg and Gal [2] and
another by Banik and Bandyopadhyay [24], as well as a
simple extrapolation and parametrization of the results of
Dabrowski [21], in order to estimate the error committed
by neglecting other hyperons and in particular the Σ−.
The results are reported in sect. 6.

3 Threshold for hyperon formation

In neutron star matter we impose that the conditions for β
equilibrium are fulfilled. The neutron, proton and Lambda
hyperons are subject to the processes

p+ e− → n+ νe ; p+ e− → Λ+ νe

as well as their inverse

n→ p+ e− + νe ; Λ→ p+ e− + νe . (5)

We write the equality of the chemical potentials

µ̂ = (µn +mn)− (µp +mp) = µe − µν ;

µn +mn = µΛ +mΛ . (6)

We must also impose electric charge conservation,

ne = np . (7)

At a given baryonic density the electron, proton and hy-
peron fractions are determined by the solution of eqs. (6),
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(7). The chemical potentials are determined by deriving
the Skyrme energy density functional with respect to the
density of the corresponding particle. Their explicit ex-
pression is given in the appendix. The electrons are rel-
ativistic and their chemical potential is given by µe =
√

k2
Fe +m2

e. In protoneutron star matter with trapped

neutrinos we have µν = (6π2nν)
(1/3), while in colder

neutrino-free neutron star matter, µν = 0.
The equations should actually take into account the

muons in the equation for charge conservation together
with the condition µe = µµ. The muons appear namely
around saturation density. The muons were neglected in
this simplified model. Their effect is in fact not very impor-
tant, especially in our case where the charged Σ− is also
absent from the model. A sample of the results obtained
when taking the muons into account is given in sect. 6.

The threshold for Λ-hyperon formation is determined
by the condition

µΛ(thr) = µΛ(kFΛ = 0) = µn +mn −mΛ

= u0

(

1 +
y0
2

)

ρN +
3

8
u3

(

1 +
y3
2

)

ρβ+1
N

+
1

8
[u1(2 + y1) + u2(2 + y2)] kρ

5/3
N , (8)

with k = (3/5) (3π2)(2/3). It depends on the strength of
the ΛN force through the parameters u0, u1, u2, u3, . . . and
indirectly on the NN force through the chemical potential
of the neutron (taken in npe matter in β equilibrium) and
is independent of the ΛΛ force. Depending on the choice
of the parameters it is found that the threshold generally
occurs between 1.7 nsat and 4 nsat in agreement with other
Brueckner-Hartree-Fock or relativistic mean-field calcula-
tions. When numerical values are inserted, one can see
that the value of µΛ(thr) is the result of a delicate cancel-
lation between the u0 and u3 terms, the contribution of the
u1, u2 term being of the order of the sum of the u0 and u3

terms. For example, at ρN = 3 nsat and nsat = 0.16 fm−3

we have for the LY-I parametrization of the NΛ force

u0

(

1 +
y0
2

)

ρN = −223.32 MeV ,

3

8
u3

(

1 +
y3
2

)

ρβ+1
N = 183.51 MeV ,

1

8
[u1(2 + y1) + u2(2 + y2)] kρ

5/3
N = 27.46 MeV .

Let us also note that the value of µΛ(kFΛ = 0) at
saturation density with equal number of neutron and pro-
tons is nothing but the single particle potential felt by a Λ
impurity in nuclear matter, i.e. it should be equal to the
binding potential VΛ ' −28 MeV obtained from data on
hypernuclei. The actual values of VΛ = µΛ(kFΛ = 0, nB =
0.16 fm−3) are reported in the last column of table 2.

We may conclude this section by stating that, once
the parametrization of the NΛ force has been chosen so
that the potential felt by a Λ in nuclear matter reproduces
the experimental value, the condition that the threshold
density for Λ-hyperons in nuclear matter in β equilibrium
should lay around 2-3 times saturation density does not

severely constrain the admissible Skyrme NN and NΛ
forces. We observe that stiffer equations of state (eos) and
the eos allowing for a larger proton fraction have lower
hyperon thresholds (see table 5 for a sample of the results).

4 Transition to ferromagnetic state

4.1 Criterion for a ferromagnetic instability

Previous studies on the neutrino mean free path in neu-
tron matter [9] or npe− matter in β equilibrium [11] found
that a pole appears in the calculation of the axial struc-
ture function above a certain critical density. This feature
is typical of Skyrme models and is related to a transition
to a ferromagnetic state. In this section we will study how
this critical density is affected by the presence of hyperons.

Let us define the magnetic susceptibilities χij where
i, j ∈ {n, p, Λ}:

1

χij
=

∂2E

∂Mi∂Mj
, Mi = κi(ρi↑ − ρi↓) , (9)

where E = E(ρn↑, ρn↓, ρp↑, ρp↓, ρΛ↑, ρΛ↓) is the polarized
energy density functional,Mi are the magnetizations and
κi are the magnetic moments. The inverse susceptibili-
ties are therefore proportional to the second derivatives of
the energy density functional with respect to the polariza-
tions:

κiκj
χij

=
2ρ

ρiρj
∆ij , (10)

∆ij =
1

2

∂2(E/ρ)

∂si∂sj
with si =

ρi↑ − ρi↓
ρi↑ + ρi↓

.

On the other hand, it can be shown that the ∆ij are

related to the Landau parameters gij0 defined in the ap-
pendix through

∆ij =
2ρ

ρiρj

1
√

N i
0N

j
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Gij
0 , if i 6= j ,

∆ii =
2ρ

ρ2
i

1

N i
0
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Gij
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√
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j
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ij
0 , N i
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m∗i kFi

π2~2
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A criterion for the appearance of the ferromagnetic phase
is that the determinant of the inverse susceptibility matrix
vanishes,

Det





1/χnn 1/χnp 1/χnΛ

1/χpn 1/χpp 1/χpΛ

1/χΛn 1/χΛp 1/χΛΛ



 = 0 (12)

and in terms of the Landau parameters:

Det





(1 +Gnn
0 ) Gnp

0 GnΛ
0

Gpn
0 (1 +Gpp

0 ) GpΛ
0

GΛn
0 GpΛ

0 (1 +GΛΛ
0 )



 = 0 . (13)

It can be shown that this quantity appears in the denom-
inator of the static axial response (see [16]).
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4.2 Dependence of the criterion on parameter sets

A few NN forces (MSk7, SkX, SkS3) had to be discarded
as not convenient for obtaining the equation of state away
from saturation, some more for not permitting the forma-
tion of hyperons below 5 nsat, others again for undergoing
a transition to pure neutron matter before the thresh-
old for hyperon formation was reached (SIII, SI′, SIII′,
Skz0–Skz4).

The remaining ones all display a transition to the fer-

romagnetic state at some critical density nβ−npe
ferro when no

hyperons are present, with the exception of the SV force.
Usually, the ferromagnetic transition occurs earlier in pure
neutron matter (PNM) than in symmetric nuclear matter
(SNM), and at an intermediate density for npe matter
in β equilibrium. One exception is the case of the Lyon
Skyrme forces where the reverse situation appears to oc-
cur. A closer look nevertheless reveals that only traces of
protons are enough to drastically lower the critical density
in very neutron-rich matter so that the usual pattern is in
fact recovered.

Some forces (SkO, SkO′, SkI1, SkI4, SkT4, SkT5)
again need to be discarded since the ferromagnetic tran-
sition occurs below nsat in symmetric nuclear matter, so
that the nuclei would in fact be unstable with respect to
spin fluctuations. This leaves us with forces for which the

nβ−npe
ferro occurs in the range nsat–3 nsat, and the threshold

for Λ-hyperon formation in the range 1.7 nsat–4 nsat. A

key point is now whether nβ−npe
ferro is greater or lower than

nΛthr. While the criterion for the onset of the ferromag-
netic instability eq. (13) decreases with increasing density
in npe matter in β equilibrium, we noted that it always
tends to increase again when enough hyperons are present.

This then rejects the critical density nβ−npeΛ
ferro for the on-

set of ferromagnetism in npΛe matter in β equilibrium to
higher densities. In a few cases the instability even disap-
pears altogether. For the majority of NN parameter sets,
the ferromagnetic transition occurs before the threshold
for hyperon formation. In some cases (SLy4, SLy7, SGI),

we have nΛthr ∼< nβ−npe
ferro , and the ferromagnetic transition

is only delayed by a tiny amount.
We finally selected four NN forces (SLy10, SkI3, SkI5,

SV) as relevant for our purpose, namely to study neu-
tron star matter with a hyperonic component before the
ferromagnetic transition sets in. In fig. 1 (top, middle,
bottom) we have represented the criterion (13) for these
parametrizations of the NN Skyrme force and various
choices of the NΛ and ΛΛ forces. The modification of
the slope at the hyperon threshold around 2 nsat is clearly
visible in fig. 1.

The SVNN interaction is atypical as it has no t3-term.
This parametrization is especially interesting since, among
all tested NN interactions, it was the only one which
does not give a ferromagnetic instability in npe matter in
β equilibrium. This parametrization is rather old (1975)
but yields an acceptable description of the properties of
nuclear matter and nuclei and it complies with all the con-
ditions necessary for describing a viable neutron star. The
SLy10, SkI3 and SkI5 are modern forces. The SLy10 set
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Fig. 1. Criterion for the transition to a ferromagnetic state
as a function of density, displaying the influence of the choice
of interactions: choice of the NN force (top panel), of the NΛ
force (middle panel) and of the ΛΛ force (lower panel).

was designed to reproduce features of pure neutron matter
as obtained from the variational calculations of Wiringa et
al. in view of its application to neutron stars. The SkI3 and
SkI5 sets were designed in order to improve isotope shifts
and incorporate the dipole sum rule enhancement factor
κ = 0.25. Let us notice that the SkI3, SkI5 and SV allow
for larger proton fractions than the SLy10, in particular
we can see from table 4 that the criterion for opening of
the direct URCA process with nucleons is reached before
the theshold for hyperon production.

The behaviour of the criterion for ferromagnetic insta-
bility is qualitatively very similar for all choices of the NΛ
interaction. Forces yielding smaller ρΛ(thr) and softer eos
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Table 4. a)-d): thresholds for ferromagnetism in npΛe matter in β equilibrium.

a) NN force = SLy10 (threshold for ferromagnetism in PNM: 3.837 nsat, in SNM: 3.821 nsat, in npe matter in β equilibrium:
3.055 nsat).

NΛ nthr Yp no ΛΛ SLL1 SLL2 SLL3

LY-I 2.719 0.041 grazing [4.3] no pole 6.183 3.898
LY-II 2.868 0.040 3.160 3.212 3.236 3.328
LY-IV 2.764 0.041 3.657 no pole 6.480 3.818
YBZ5 3.319 0.037 – – – –
YBZ6 5.101 0.029 – – – –
SKSH1 2.294 0.044 4.577 5.297 4.729 4.153

b) NN force = SkI3 (threshold for ferromagnetism in PNM: 2.298 nsat, in SNM: 5.73 nsat, in npe matter in β equilibrium:
3.078 nsat).

NΛ nthr Yp no ΛΛ SLL1 SLL2 SLL3

LY-I 1.864 0.126 no pole no pole 9.234 4.663
LY-IV 1.873 0.127 no pole no pole 8.900 4.548
YBZ1 2.015 0.139 no pole no pole 8.753 4.893
YBZ5 1.942 0.133 no pole no pole 7.550 4.080
YBZ6 2.076 0.144 no pole no pole 9.194 5.633
SKSH1 1.739 0.116 8.225 9.495 6.765 4.425
SKSH2 1.681 0.111 18.875 15.250 8.253 4.212

c) NN force = SkI5 (threshold for ferromagnetism in PNM: 1.772 nsat, in SNM: 2.659 nsat, in npe matter in β equilibrium:
2.140 nsat).

NΛ nthr Yp no ΛΛ SLL1 SLL2 SLL3

LY-I 1.727 0.150 grazing [4.34] no pole 4.707 3.166
LY-IV 1.734 0.150 grazing [4.14] no pole 4.627 3.095
YBZ1 1.838 0.162 no pole no pole 8.656 3.622
YBZ5 1.785 0.156 no pole no pole 5.404 3.239
YBZ6 1.882 0.167 no pole no pole 9.118 3.950
SKSH1 1.629 0.138 3.337 3.914 3.541 3.103

d) NN force = SV (threshold for ferromagnetism in PNM: 4.850 nsat, in SNM: no pole, in npe matter in β equilibrium: no
pole).

NΛ nthr Yp no ΛΛ SLL1 SLL2 SLL3

LY-I 1.793 0.125 no pole no pole 9.330 4.576
LY-IV 1.800 0.126 no pole no pole 9.143 4.533
YBZ1 1.906 0.133 no pole no pole 8.649 4.635
YBZ3 1.672 0.116 no pole no pole 11.700 5.050
YBZ5 1.851 0.129 no pole no pole 7.521 3.956
YBZ6 1.951 0.136 no pole no pole 9.093 5.200
SKSH1 1.691 0.118 no pole no pole 8.920 4.250
SKSH2 1.635 0.114 no pole no pole 8.253 4.068

(see sect. 5) also tend to be more efficient in lifting the
ferromagnetic criterion det[δij + Gij ] above the critical
zero axis. This is especially the case for the Y BZ4 pa-
rameter set which permitted to avoid the pole also in the
SLy4 and SLy7 parametrizations of the NN force. How-
ever the YBZ4 parameter set was rejected by Lanskoy
on the ground that it gives overbinding of the Λ in hy-
pernuclei so that we will not consider it further. Despite
this overall similarity the actual presence and position of
the pole is sensitive to the choice of the NΛ force. This
happens because the det[δij +Gij ] has already decreased

considerably prior to ρΛ(thr) and the turnover due to the
contribution of the Λ therefore must take place in the
vicinity of the zero axis.

We can also see on this figure that the ΛΛ interac-

tion plays an important role in determining nβ−npeΛ
ferro . The

set SLL3 (which also gives a stiffer eos, see next section)
is less efficient in removing the pole while the SLL1 set
which gives the softest eos is also the most efficient in
preventing the onset of ferromagnetism. The ΛΛ force of
Lanskoy [5] is very schematic (it is parametrized by λ0

and λ1 only, see the appendix); moreover, it was adjusted
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Fig. 2. Typical results for the equation of state.

to the older value ∆BΛΛ = −4.8 MeV instead of the
value ∆BΛΛ ' −1 MeV recently extracted from the “Na-
gara event”. The case where a vanishing ΛΛ interaction
is assumed may in fact be closer to the true situation. A
better knowledge of the ΛΛ interaction at high density is
needed.

The values of density and proton content at the thresh-
old for hyperon formation as well as the critical values for
the ferromagnetic transition for various models are gath-
ered in table 4 a)-d). All densities are quoted in units of
the saturation density of the corresponding model. The
mention “grazing” means that det[δij + Gij ], while not
actually crossing the zero axis, comes so near it that for
all practical purposes the static axial response function
will behave as if a pole were present.

5 Equation of state and neutron star

structure

5.1 Equation of state, effective masses and the
hyperon fraction

For neutron star matter in β equilibrium without hyper-
ons, the equations of state are in order of decreasing stiff-
ness parametrized by the NN interaction SV > SkI3,
SkI5 > SLy10. The parametrizations SkI3 and SkI5 yield
nearly indistinguishable results, so that SkI5 will not be
considered further in the remainder of this work. When the
hyperons are taken into account in the calculation of the
β equilibrium, the equation of state softens as expected.
For a given NN interaction, we have, in order of decreas-
ing stiffness, YBZ6 > YBZ1 > LY-I, LY-IV > YBZ3 >
SKSH2 > SKSH1. Finally, when varying the ΛΛ interac-
tion for given NN and NΛ forces, we obtain SLL3 > SLL2
> SLL1. If the ΛΛ interaction is set to zero, the equation
of state is somewhat stiffer than SLL2 at nB < 5 nsat and
much softer above 5 nsat. We note the sizable effect of the
ΛΛ interaction on the equation of state, as well as in the
previous section on the value of the Landau parameters.

The equation of state is shown in fig. 2 for two of our
preferred NN forces, and with the same choice LY-I for
the NΛ interaction and SLL2 for the ΛΛ interaction. Even
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Fig. 3. Modification of the effective masses by the presence
of hyperons.

though SkI3 was stiffer than SLy10 without hyperons, the
combination SkI3 + LYI + SLL2 gives rise to a higher
hyperon content at a given density (see also fig. 4) than
SLy10 + LYI + SLL2, so that it is also subject to more
softening. As a consequence, the eos with hyperons are
very similar.

Figure 3 illustrates the behavior of the effective masses
in the case of the parameter set SkI3 + YBZ6 + SLL2.
The effective masses of the neutrons are lower than that
of protons in neutron-rich matter, a feature generally en-
countered in Skyrme models. The presence of hyperons
causes both the neutron and proton mass to decrease less
rapidly at high density.

Figure 4 shows the particle fractions Yi = ni/nB as
a function of total baryonic density nB for the SkI3 +
YBZ6 + SLL2 and SLy10 + LYI + SLL2 parameter sets.
It can be seen in the top panel that the hyperons appear
at higher density and are less numerous for a given den-
sity with SLy10 + LYI + SLL2 than with SkI3 + YBZ6 +
SLL2. The bottom panel shows the chemical composition
of matter with a non-vanishing number of trapped neutri-
nos at zero temperature. The case with trapped neutrinos
and finite temperature relevant for protoneutron stars will
be discussed further in sect. 7.

5.2 Solution of the Tolman-Oppenheimer-Volkoff
equation

Our selected parameter sets still have to pass the test of
causality in the density range of interest, and whether they
can support neutron stars with maximum masses larger
than the observed value 1.4 M¯.

The properties of neutron stars formed of npe mat-
ter in β equilibrium were calculated by Rikovska Stone et
al. [3] for a large number of Skyrme parametrizations. The
four NN interactions that we singled out in sect. 4 all be-
long to the subset of interactions selected by these authors
as giving viable neutron stars, with maximum masses of
the order 2 M¯ to 2.4 M¯. The central density reached in
stars with the maximum mass is slightly larger than the
density at which the velocity of sound reaches the velocity
of light for the SLy10 and SV parametrizations whereas
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the equation of state obtained with SkI3 and SkI5 always
remains causal. In any case, stars with the fiducial mass
1.4 M¯ always fulfill nc(1.4 M¯) < nB(c

2
s = 1).

When hyperons are added, the equation of state being
softer, the limit c2s = 1 is reached for larger densities. It is
pushed to ∼ 8–11 times saturation density for the SLL3
parametrization of the ΛΛ interaction, to ∼ 13–16 nsat

for the SLL2 parametrization and is larger than 20 nsat

for the SLL1 set. The case where a vanishing ΛΛ interac-
tion is assumed always remains causal. In any case, such
densities are beyond the range of validity of the model.
As a consequence, although the softening of the eos with
hyperons gives rise to higher compression rates and larger
central densities in neutron stars than in stars made of
npe matter only, the criterion c2s < 1 is always fulfilled
up to the central density of the most massive stars in our
neutron star models with hyperons, except a few instances
involving the SLL3 parameter set.

We have solved the Tolman-Oppenheimer-Volkoff
equation to obtain the (non-rotating) neutron star mass-
radius relation. The equation of state is matched at lower
densities with that of Negele and Vautherin [25] for ρ ∈
[0.001−0.08] fm−3 and with the Baym-Pethick-Sutherland
(BPS) [26] equation of state for ρ < 0.001 fm−3. The re-
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sults1 are summarized in table 5 a)-d) and a sample of
mass-radius curves is shown in figs. 5 and 6. For each
combination of the NN , NΛ and ΛΛ interaction we give
the density at which the speed of sound becomes superlu-
minal, the central density and radius of a 1.4 M¯ in case
it can be formed, and the central density and radius of the
star with maximum mass Mmax.

1 The parameters we obtained for the stars composed of npe
matter may differ very slightly from those quoted by Rikovska
Stone et al., presumably due to a different matching at low
density or the neglect of the muons.
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Table 5. Conditions for causality and neutron star properties.

a) NN force = SLy10 (in npe matter in β equilibrium: nB(c
2
s=1)=7.308 nsat, nc(1.4 M¯)=3.60 nsat, R(1.4 M¯)=11.05 km,

nmax = 7.69 nsat, Mmax = 1.99 M¯, R(Mmax) = 9.52 km).

NΛ ΛΛ nB(c
2
s = 1) nc(1.4 M¯) R(1.4 M¯) nmax Mmax R(Mmax)

LY-I no ΛΛ causal – – 6.94 1.317 10.36
LY-I SLL1 > 20 – – 5.99 1.210 10.70
LY-I SLL2 16.032 9.38 9.0 12.38 1.425 8.11
LY-I SLL3 11.036 5.25 10.42 10.23 1.658 8.55

LY-IV no ΛΛ causal – – 6.82 1.338 10.43
LY-IV SLL2 15.880 8.49 9.35 12.07 1.437 8.21

SKSH1 no ΛΛ > 20 – – 5.09 0.875 10.8
SKSH1 SLL2 > 20 – – 20.6 1.159 6.19
SKSH1 SLL3 13.210 10.25 8.15 13.65 1.453 7.40

YBZ5 no ΛΛ causal – – 5.51 1.377 10.98
YBZ5 SLL1 > 20 – – 4.94 1.234 11.11
YBZ5 SLL2 13.825 7.11 10.04 11.64 1.456 8.34
YBZ5 SLL3 8.440 4.14 10.97 9.41 1.789 8.92

b) NN force = SkI3 (in npe matter in β equilibrium: nB(c
2
s = 1) = 6.343 nsat, nc(1.4 M¯)=2.27 nsat, R(1.4 M¯) = 13.21 km,

nmax = 6.12 nsat, Mmax = 2.263 M¯, R(Mmax) = 11.16 km).

NΛ ΛΛ nB(c
2
s = 1) nc(1.4 M¯) R(1.4 M¯) nmax Mmax R(Mmax)

LY-I no ΛΛ causal – – 4.34 1.339 12.57
LY-I SLL1 > 20 – – 3.71 1.263 12.98
LY-I SLL2 15.880 10.44 8.99 12.59 1.413 8.30
LY-I SLL3 10.514 3.96 12.24 9.50 1.723 9.19

LY-IV no ΛΛ causal – – 4.33 1.351 12.68
LY-IV SLL2 15.739 9.59 9.34 12.44 1.422 8.35
LY-IV SLL3 10.400 3.83 12.37 9.36 1.734 9.25

YBZ1 no ΛΛ causal 2.52 13.20 4.49 1.534 12.59
YBZ1 SLL2 13.293 2.75 13.13 9.53 1.545 9.51
YBZ1 SLL3 7.764 2.68 13.17 7.93 1.907 9.85

YBZ5 SLL2 13.969 9.57 9.27 12.56 1.427 8.22
YBZ5 SLL3 8.269 3.43 12.69 8.74 1.822 9.37

YBZ6 no ΛΛ causal 2.36 13.20 4.66 1.655 12.52
YBZ6 SLL1 > 20 2.38 13.19 4.12 1.553 12.82
YBZ6 SLL2 13.077 2.39 13.19 6.79 1.642 11.02
YBZ6 SLL3 7.439 2.41 13.18 7.43 1.967 10.16

SKSH1 no ΛΛ > 20 – – 3.32 1.116 13.02
SKSH1 SLL2 > 20 – – 3.07 1.073 13.11
SKSH1 SLL3 12.46 7.25 9.91 12.08 1.544 8.20

SKSH2 SLL2 15.497 – – 3.16 1.041 13.0
SKSH2 SLL3 9.971 5.81 10.55 10.83 1.658 8.46

c) NN force = SkI5 (in npe matter in β equilibrium: nB(c
2
s = 1) = 6.377 nsat, nc(1.4 M¯) = 2.10 nsat, R(1.4 M¯)=13.87 km,

nmax = 6.08 nsat, Mmax = 2.273 M¯, R(Mmax) = 11.36 km).

NΛ ΛΛ nB(c
2
s = 1) nc(1.4 M¯) R(1.4 M¯) nmax Mmax R(Mmax)

LY-I SLL2 15.915 – – 3.70 1.297 13.32
LY-I SLL3 10.544 3.84 12.77 9.52 1.719 9.27

YBZ6 no ΛΛ causal 2.20 13.85 4.44 1.627 12.96
YBZ6 SLL2 13.103 2.25 13.84 7.64 1.615 10.65
YBZ6 SLL3 7.470 2.28 13.85 7.48 1.958 10.22

SKSH1 SLL2 > 20 – – 2.80 1.133 13.85
SKSH1 SLL3 12.494 7.28 10.08 12.09 1.541 8.26
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Table 5. Continued.

d) NN force = SV (in npe matter in β equilibrium: nB(c
2
s = 1) = 4.983 nsat, nc(1.4 M¯) = 2.10 nsat, R(1.4 M¯) = 13.46 km,

nmax = 5.44 nsat, Mmax = 2.426 M¯, R(Mmax) = 11.54 km).

NΛ ΛΛ nc2
s
=1 nc(1.4 M¯) R(1.4 M¯) nmax Mmax R(Mmax)

LY-I no ΛΛ causal – – 4.08 1.368 12.80
LY-I SLL1 > 20 – – 3.53 1.291 13.15
LY-I SLL2 15.412 9.39 9.44 12.38 1.424 8.37
LY-I SLL3 9.553 3.54 12.69 9.03 1.768 9.34

LY-IV no ΛΛ causal – – 4.08 1.379 12.96
LY-IV SLL2 15.317 8.78 9.73 12.14 1.432 8.45

YBZ1 SLL2 13.291 2.52 13.35 9.57 1.544 9.52
YBZ1 SLL3 7.558 2.49 13.40 7.69 1.925 9.97

YBZ6 no ΛΛ causal 2.19 13.40 4.44 1.662 12.75
YBZ6 SLL1 > 20 2.21 13.40 4.01 1.562 13.04
YBZ6 SLL2 13.082 2.22 13.41 6.5 1.639 11.24
YBZ6 SLL3 7.253 2.25 13.42 7.24 1.984 10.27

SKSH1 no ΛΛ > 20 – – 3.22 1.157 13.17
SKSH1 SLL2 18.318 – – 3.06 1.111 13.24
SKSH1 SLL3 10.914 6.09 10.54 11.07 1.612 8.44

As a rule of thumb, it is known that the stiffer the
equation of state is, the larger will be the maximum mass
of the neutron star. Our results for Mmax follow accord-
ingly to the classification in stiffness given at the begin-
ning of this section. Thus, the SKSH1 choice generally
yields Mmax < 1.4 M¯, whereas the YBZ6 always passes
this test successfully. We see again that the choice of the
ΛΛ interaction is crucial to determine whether or not the
star is able to reach to 1.4 M¯ line. When the ΛΛ inter-
action is switched off or for the SLL1 choice, the equa-
tion of state is generally too soft to support a 1.4 neu-
tron star. On the other hand, the SLL3 always succeeds
in producing Mmax > 1.4 M¯. The SLL2 choice barely
makes it to 1.4 M¯ for intermediate choices of the NΛ
interaction. This results in a plateau feature, where tiny
additions of mass effect a large reduction of radius with-
out actually reaching the instability, the M = 1.4 M¯

point being finally reached at unprobably high densities
ρ > 10 nsat much beyond the validity of the model. A
stiff equation of state on the other hand is not convenient,
since it favours ferromagnetism to appear earlier. The lat-
ter condition usually rules out the SLL3 choice.

For the SLy10 choice of the NN interaction ferro-
magnetism always sets in before the central density of
a 1.4 M¯ star is reached. In particular, it must be re-
minded at this point that ferromagnetism is reached be-
fore the threshold of production of hyperons for the choices
YBZ1, YBZ5, YBZ6. For the SkI3 choice, the criterion
nc(1.4 M¯) < nferro is satisfied for the sets (SkI3 + LY-
IV + SLL3), (SkI3 + YBZ5 + SLL3) and (SkI3 + YBZ1
or YBZ6 + any choice of ΛΛ ). The star with the max-
imum mass also fulfills all requirements if it is described
by (SkI3 + YBZ6 + no ΛΛ ) or (SkI3 + YBZ6 + SLL2).
The results obtained with the choice SkI5 are very similar.
The choice SV represents an intermediate situation. The
1.4M¯ star fulfills both criteria nc(1.4M¯) < nB(c

2
s = 1)

and nc(1.4M¯) < nferro in the cases (SV + LY-I + SLL3),

(SV + LY-IV + SLL2), (SV + YBZ1 + SLL2/3), (SV +
YBZ6 + any choice of ΛΛ). Moreover, the star with the
maximum mass also fulfills both criteria for the choices
(SV + YBZ6 + no ΛΛ) and (SV + YBZ6 + SLL2).

In fig. 6 we compare the mass-radius relation obained
in several non-relativistic models of matter in β equi-
librium with hyperons. As discussed above, among our
Skyrme parametrizations the best are the SkI3 + YBZ6 +
SLL2 and the SLy10 + LYI + SLL2 sets. The SkI5
or SV forces again give results very similar to those of
the SkI3 force. The maximum mass reached with the
stiffer SkI3 + YBZ6 + SLL2 set is 1.64 M¯ comfort-
ably above the Hulse-Taylor value 1.44 M¯, while the
maximum mass permitted by the softer SLy10 + LYI +
SLL2 set, 1.42 M¯, falls a bit short. This is however
not an uncommon feature in non-relativistic models (see
Brueckner-Hartree-Fock calculations [27,28]). Among the
parametrizations given by Balberg and Gal [2], that with
intermediate compressibility corresponding to γ = 5/3
was chosen. Figure 6 also displays the results obtained
with a density-dependent Seyler-Blanchard potential as
parametrized by Banik and Bandyopadhyay [24]. In con-
trast to our Skyrme forces, the models of Balberg and Gal
and of Banik and Bandyopadhyay both take into account
Σ-hyperons (see table 6). The threshold for hyperon for-
mation is represented in the figure with circles for the Λ
and crosses for the Σ.

The parametrization of Balberg and Gal is in fact un-
stable slightly above the Λ-hyperon threshold. As a conse-
quence, theM vs. R relation displays an extended plateau,
then recovers, crosses the line M = 1.4 M¯ and finally
reaches a maximum at M = 1.53 M¯.

Also represented in the figure are lines of constant
gravitational redshift:

z =

(

1−
2GM

Rc2

)−1/2

− 1 .
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Table 6. Neutron star properties for the models of Balberg and Gal [2] and Banik and Bandyopadhyay [24].

Model nΣthr nΛthr R(1.4 M¯) nc(1.4 M¯) Mmax R(Mmax) nc(Mmax)

Balberg γ = 5/3 1.82 2.32 9.02 8.5 1.53 7.74 12.8
Banik & Bandyo. 1.52 2.82 10.6 5.4 1.66 8.68 10.2
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Fig. 7. Density profile of a 1.4 M¯ neutron star for several non-relativistic models of baryonic matter.

To date, two determinations exist from the observation of
spectral lines in isolated neutron stars [29]. Sanwal et al.
obtained a result with a large error bar, z = 0.12–0.23,
while Cottam et al. could extract a precise determination
z = 0.35. All the neutron star models displayed would be
compatible with the determination of Sanwal et al. Almost
all models are also in agreement with the value z = 0.35 of
Cottam et al. On the other hand, the mass-radius relation

from the SkI3 + YBZ6 + SLL2 set is only marginally
compatible with this value.

Figure 7 displays the density profile of a 1.4 M¯ neu-
tron star and its hyperonic content. The profiles corre-
sponding to two of the Skyrme parameters sets studied in
this work, SkI3 + YBZ6 + SLL2 and SLy10 + LYI + SLL2
(top panels) are compared to a version of the models of
Balberg and Gal [2] and of Banik and Bandyopadhyay [24]
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Table 7. Influence of the muons on the threshold for hyperon
production.

nthr(µ) nthr(Λ) Y thr
p

SkI3 + YBZ6 + SLL2 0.782 2.194 0.186
SLy10 + LYI + SLL2 0.721 2.726 0.052
SV + YBZ6 + SLL2 0.752 2.024 0.169

(medium and bottom left panels), where all hyperons save
the Λ’s are artificially switched off. The profiles corre-
sponding to the latter two models when also Σ−-hyperons
are taken into account is displayed on the medium and
bottom right panels. We can see that additional hyperons
make the equation of state softer and the neutron star
more compact.

6 Influence of the neglect of muons or

Σ−-hyperons

In this section we will stop for a moment to consider the
probable impact on our conclusions of the error committed
by neglecting some particles in the model.

Let us first justify the claim made in sect. 3 that we
could safely neglect the muons. The threshold for muon
production was calculated using our three preferred NN
forces SkI3, SLy10 and SV. It is found to lie around three
quarters of the saturation density (see table 7). Muons are
thus present through all the star except the crust if it is
assumed that the star is made of (npΛe−µ−) matter. They
are known to disappear at high density if charged hyperons
(like the Σ−) are taken into account. The muon fraction
however never comes to be very high, and the respective
fractions of n, p and Λ baryons are little altered, as can
be seen in fig. 8 (top panel). Since the Landau parameters
only depend on the baryonic densities, the ferromagnetic
criterion is also not appreciably modified (see fig. 8, central
panel). Finally, the contribution to the equation of state
is also imperceptible (fig. 8, bottom panel).

Much more severe could be the influence of other hy-
perons, especially the Σ−. We have already mentioned in
the previous section, and it can be plainly seen in fig. 7
(middle and lower panels), that the effect on the com-
position, equation of state and neutron star structure is
indeed important: as a matter of fact, it is a well-known
result that increasing the number of degrees of freedom (in
this case, allowing for more hyperons) always yield softer
equations of state and more compact stars.

Moreover, the purpose of this paper is not only to have
another model for the structure of neutron stars with hy-
perons, but also to prepare the ground for the calcula-
tion of neutrino-nucleon scattering within the same frame-
work [16], for which a knowledge of the interaction in the
spin S = 1 channel is needed. Since neither the model of
Balberg and Gal [2] nor that of Banik and Bandyopad-
hyay [24] provide us information on polarized systems,
they do not allow to study the ferromagnetic criterion
when the Σ− are taken into account.
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Fig. 8. Effects of muons on the chemical composition, ferro-
magnetic criterion and equation of state.

As mentioned in the introduction, only the Λ-hyperons
are considered in the models presented in the previous sec-
tions because this study is restricted to potentials avail-
able in the literature, thus offering some guarantee that
they correctly reproduce the properties of nuclear matter
as well as the experimental data on nuclei and hypernuclei.
In order to ascertain the important point whether npΛΣ
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Table 8. Parameters of Dabrowski’s ΣN interaction (quoted in MeV) and threshold densities (in units of the saturation density)
for the formation of Σ and Λ hyperons in matter in β equilibrium. The values are quoted with/(without) muons taken into
account.

U0 Uτ Uσ Uστ

model D −13.1 55.1 66.8 63.9
model F 23.5 20.4 72.3 95.6

(SkI3 + YBZ6 + SLL2)

nΣ
−

thr nΛthr

1.57 (1.50) 5.64 (5.85)
2.03 (1.89) 2.52 (2.57)

(SLy10 + LYI + SLL2)

nΣ
−

thr nΛthr

2.50 (2.47) 2.92 (2.94)
4.92 (4.86) 2.73 (2.73)

matter is stable against spin fluctuations, let us neverthe-
less deviate for a moment from this line of conduct.

There is actually some data on the Σ− available in
the papers by Dabrowski [21]. This author calculated the
single-particle potential U(kΣ , nB) felt by a Σ impurity in
nuclear matter:

UΣ−↑/↓(kΣ , nB) = U0−
1

2
ατUτ +

1

4
ασUσ∓

1

2
αστUστ (14)

with ατ =
ρp − ρn
ρp + ρn

,

ασ =
ρp↑ + ρn↑ − ρp↓ − ρn↓

ρp + ρn
,

αστ =
ρp↑ − ρp↓ − ρn↑ + ρn↓

ρp + ρn

Dabrowski quotes numerical values for the Ui taken at
the point kΣ = 0, nB = nsat (which are reproduced in
table 8, all values being given in MeV) for several variants
of the Nijmegen potential. “Model D” and “model F”,
while not the most modern Nijmegen potentials available,
are representative of an attractive (respectively, repulsive)
NΣ− interaction potential in nuclear matter. Model F is
favoured by Dabrowski for the description of hypernuclei
as well as of the data collected at BNL on the (K−, π+)
reaction.

In order to address the question of the influence of the
Σ− in the S = 1 channel, we may try to extrapolate this
data as follows: From U(kΣ , nB) we may extract the chem-
ical potential µΣ = (~2/2m∗Σ)k

2
FΣ+U(0, ρp+ρn). We will

take the effective mass of the Σ− constant and equal to
the free mass, an assumption supported by the Brueckner
calculations of Vidaña et al. [27] or Baldo et al. [28]. We
will assume the single-particle potential to depend linearly
on the nucleonic density, which is equivalent to neglecting
t3-like terms representative of many-body effects (see, e.g.,
appendix A, eqs. (A.7), (A.8)). Note also that only the
NΣ contribution to the chemical potential is thus taken
into account, while ΛΣ or ΣΣ contributions are ignored.
Finally, the Landau parameters gnΣ− and gpΣ− can be
identified with the spin components of the single-particle
potential:

gnΣ− =
1

4(ρn + ρp)
[Uσ + 2Uστ ] ,

(15)

gpΣ− =
1

4(ρn + ρp)
[Uσ − 2Uστ ]
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Fig. 9. Chemical composition of npΛΣ−e−µ− matter in β
equilibrium. The interaction is chosen to be (SLy10 + LYI +
SLL2) for the npΛ subsystem. The NΣ interaction is described
by Nijmegen models D (top panel) or F (bottom panel).

The chemical equilibrium is obtained by applying the
same conditions as before on the chemical potential (see
sect. 3), supplemented by the condition for β equilibrium
on the Σ− fraction µΣ− = µΛ + µn − µp. The particle
fractions obtained in this way are shown in fig. 9.
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Fig. 10. Ferromagnetic criterion in npΛΣ−e−µ− matter in β
equilibrium.

The interaction is chosen to be (SkI3 + YBZ6 + SLL2)
or (SLy10 + LYI + SLL2) for the npΛ subsystem. When
(SLy10 + LYI + SLL2) is used, the Σ− appear at lower
density than the Λ for model D, while they appear af-
ter the Λ for model F. When (SkI3 + YBZ6 + SLL2)
is used, the Σ− appear earlier than the Λ in both cases.
Let us notice that the characterization of models D and
F as, respectively, “attractive” and “repulsive” loses some
of its significance, since we are dealing with matter with
a strong n:p asymmetry, and the attractive U0 interaction
of the D model is compensated by a strongly repulsive Uτ
in the isospin channel. The threshold densities are given
in table 8. Values with (without) parentheses represent
threshold in matter without (with) muons. Again we can
see that the presence of muons does not appreciably affect
the results. Some threshold densities obtained in this way
are somewhat low (see, e.g., nΣthr with the parametriza-

tion (SkI3 + YBZ6 + SLL2) + (model D)), reflecting the
crudeness of the approximations performed here.

The ferromagnetic criterion is now given by the deter-
minant of the 4× 4 matrix (see eq. (13))

Det[δij +Gij ] =

Det











(1 +Gnn
0 ) Gnp

0 GnΛ
0 GnΣ−

0

Gpn
0 (1 +Gpp

0 ) GpΛ
0 GpΣ−

0

GΛn
0 GΛp

0 (1 +GΛΛ
0 ) GΛΣ−

0

GnΣ−

0 GpΣ−

0 GΛΣ−

0 (1 +GΣ−Σ−

0 )











.

From this model it is found (see fig. 10) that the
Σ-hyperons do not spoil the behavior of the ferromagnetic
criterion observed in sect. 4. A more detailed study involv-
ing a better knowledge of the interaction of the Σ with all
baryons, and especially its dependence on the density and
chemical composition of the matter, is however desirable
before we can draw definite conclusions on that subject.

Let us, to conclude this section, stress again some of
the weaknesses of the procedure used here to model the
ΣN interaction:

– One obviously questionable step is the drastic assump-
tion performed as to the density dependence of the
various components of the potential, in particular the
lack of information on the density dependence in the
S = 1 channel;

– Since Dabrowski is interested in hypernuclei, he does
not provide information on the ΣΛ and ΣΣ interac-
tions. They were here set equal to zero, in spite of the
known importance of the N -Σ-Λ coupling in Brueck-
ner calculations, and even though we have seen how
sensitive the results were to the ΛΛ interaction;

– It is known that the various Nijmegen potentials dis-
play a large variability in their description of the spin-
spin interaction, and little is known about the strength
and even sign of this component.

7 Finite-temperature effects, neutrino

trapping

According to proto-neutron star formation and cooling
calculations (see, e.g., [30]), temperatures of the order of
30 to 50 MeV can be reached in the late phases of the su-
pernova collapse. We therefore investigate here the range
T ∈ [0–50] MeV.

The thermodynamical quantities are now to be writ-
ten in terms of Fermi integrals. The expressions which
are given in the appendix at T = 0 are easily generalized:
The densities ρi and the quantities τi related to the kinetic
energy should be replaced in the expressions for the bary-
onic contributions to the energy density and the effective
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masses by (in units ~ = c = kB = 1):

ρi =
1

2π2
(2m∗i T )

3/2
I1/2(ηi) ,

τi =
1

2π2
(2m∗i T )

5/2
I3/2(ηi)

with In =

∫ ∞

0

undu

1 + eu−ηi
,

while the chemical potentials is related to the ηi by
µi = ηiT + Ui(ρi, τi). The pressure is obtained from the
derivative of the free energy:

F = E − TS , E =
∑

A,B=N,Λ

EAB + Eleptons ,

P = ρ2 ∂
2(F/ρ)

∂ρ2

with the entropy

S =
∑

i=n,p,Λ

Si + Sleptons , Si =
5τi

6m∗i T
− ρi ηi .

We used the GFD D3 code published by Gong et
al. [31] to calculate the Fermi integrals and keep as be-
fore the leptons fully relativistic, whereas the baryons are
treated non-relativistically in consistency with the use of
the Skyrme interaction.

The effect of temperature on the effective masses be-
gins to be significant at T ≥ 30 MeV; it tends to increase
the neutron mass and decrease the proton effective mass,
so that their difference is reduced. The presence of trapped
neutrinos, which tends to render the matter less asymmet-
ric, also reduces the proton-neutron mass difference. In a
warm protoneutron star, both effects are present and cu-
mulate, the main contribution coming from Yν 6= 0. The
hyperon mass, on the other hand, is not significantly mod-
ified by temperature or neutrino trapping.

The chemical composition is plotted in fig. 11, with-
out neutrino trapping in the top panel and with neutrino
trapping in the bottom panel, for four values of the tem-
perature, T = 0, 10, 20 and 50 MeV. We used in this
section the parametrization SkI3 + YBZ6 + SLL2.

Let us first discuss the neutrino-free case. It can be
seen in fig. 11 (top) that finite-temperature effects are
more important at moderate densities, nB < 3nsat. Until
T = 1 MeV the results are undistinguishable from the
T = 0 case. When T is increased from 1 to 50 MeV,
the matter is more symmetric (i.e the proton fraction in-
creases). There is stricto sensu no threshold for Λ-hyperon
production anymore, rather there always exist a vanish-
ingly small number of Λ’s for any value of the baryonic
density below the T = 0 threshold. Nevertheless, at the
temperatures considered here, it is still possible to define a
threshold density for practical purposes, which then moves
to lower values as the temperature increases.

The equation of state is somewhat stiffer at finite
T , but this hardly affects the structure of the star until
T = 20 MeV. This result concerns the case when no neu-
trinos are present in the matter. It is known, however, that
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Fig. 11. Composition of neutron star matter in β equilib-
rium at finite temperature, calculated with the parametriza-
tion SkI3 + YBZ6 + SLL2 (top) without neutrino trapping,
(bottom) with neutrino trapping, YL = 0.4.

high temperature shortens drastically the mean free path
of the neutrinos, so that a large amount of ν are trapped.
A typical value resulting from supernova collapse calcula-
tions is that the lepton fraction is of the order of YL ' 0.4.
Figure 11 (bottom) was drawn assuming this value for YL.

As expected, the matter is more symmetric when neu-
trinos are trapped and the threshold for hyperon produc-
tion is shifted to higher density. For example, with the
SkI3 + YBZ6 + SLL2 parametrization and at T = 0
we have (nthr = 2.08, Y thr

p = 0.14) for Yν = 0 and

(nthr = 2.84, Y thr
p = 0.36) for YL = 0.4. For a given lep-

ton fraction YL, varying the temperature has even less im-
pact on the composition of neutrino-trapped matter than
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Table 9. Influence of temperature on neutron star properties.

SkI3 + YBZ6 + SLL2 nferro nc2
s
=1 nc(1.4 M¯) R(1.4 M¯) nmax Mmax R(Mmax)

T = 0, Yν = 0 9.19 13.08 2.39 13.19 6.79 1.64 11.02
T = 30 MeV, YL = 0.4 11.37 12.02 2.66 15.11 6.38 1.88 12.08
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Fig. 12. Effect of neutrino trapping and finite temperature
on (top) the equation of state; (bottom) the structure of the
neutron star.

in neutrino-free matter. Figure 12 (top) shows that the
neutrino-trapped matter with hyperons is stiffer than its
neutrino-free counterpart, a known result which leads to
interesting consequences regarding a possible category of
metastable stars which would collapse to a black hole as
they cool when the deleptonization phase is completed
(see, e.g., [32]). Figure 12 (bottom) illustrates this fea-
ture for the parameter set SkI3 + YBZ6 + SLL2: A
newly formed protoneutron star with T = 30 MeV and
YL = 0.4 is metastable if its mass lies in the range
M ∈ [1.64–1.88] M¯ (and the radius in the range R ∈
[12.08–14.07] km). For a lower mass, the star contracts as

it looses its neutrinos and cools and its hyperonic content
increases (see table 9).

As a conclusion to this subsection, our results concern-
ing the effects of temperature and neutrino trapping are
in full agreement with those obtained with other models
of the baryonic interaction. The influence of the temper-
ature on the equation of state and chemical equilibrium
comes mostly indirectly through the buildup of an impor-
tant fraction of trapped neutrinos.

8 Conclusion

The aim of this work was threefold:

– Use the most recent Skyrme parametrizations with hy-
perons existing on the market which are adjusted to
reproduce the data on nuclei and hypernuclei and test
them on neutron stars;

– Study the influence of the hyperons on the ferromag-
netic transition;

– Inquire whether the hyperons are likely to affect the
tail of the neutrino burst in supernova explosions and
prepare the background for the calculation of the neu-
trino mean free path in protoneutron stars.

While the model considered in this work is still very
schematic, it has led to several interesting results.

The first result is that the presence of hyperons gener-
ally delays the onset of the ferromagnetic instability, and
in many cases they are even able to remove it completely.

Another advantage is that, by softening the equation
of state, the hyperons remove the causality flaw and keep
c2s < 1 even up to very large densities.

It is rather encouraging that NN and NΛ interactions
from different authors and apparently very dissimilar pa-
rameter sets (compare, e.g., SV to SkI3 or SKSH1 to LY-I
in tables 1, 2!), once a series of reasonable requirements are
fulfilled, yield very similar results qualitatively and even
quantitatively. The major incognita is the ΛΛ interaction
which was very poorly known at the time the interactions
used in this work were designed.

After studying 44 NN forces in combination with 13
parametrizations of the NΛ force and 4 options for the
ΛΛ forces, all taken from the literature and known to re-
produce correctly the properties of nuclei and hypernu-
clei, four combinations of NN +NΛ+ΛΛ parameter sets
were selected: (SkI3 + YBZ6 + no ΛΛ), (SkI3 + YBZ6 +
SLL2), (SV + YBZ6 + SLL2) and (SLy10 + LYI + SLL2).
Replacing SkI3 by SkI5 or LYI by LYIV in the above sets
would only give slightly different results. These sets fulfill
all of the following conditions:

i) The NN force belongs to the subset selected
by Rikovska Stone et al. The effective masses behave
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smoothly in all the relevant density and temperature
range, pure neutron matter is always stable, the asymme-
try energy does not decrease so much with density that
protons would disappear from the system, neutron stars
formed from npe matter in β equilibrium can reach a mass
at least equal to 1.4 M¯.

ii) The NΛ force belongs to the set preferred by Lan-
skoy et al. as best reproducing the properties of hyper-
nuclei. The threshold for hyperon formation should lay
between 1.7 and 4 times saturation.

iii) The neutron star formed of softer npΛe matter in
β equilibrium should still reach a mass at least equal to
1.4 M¯.

iv) No ferromagnetic transition should be present
As explained in the main text, this is, for a Skyrme
parametrization, a strong requirement.

The second result of this work is that the selected sets
are also found to reproduce all features observed in other
models such as non-relativistic Brueckner-Hartree-Fock or
relativistic mean-field calculations, not only qualitatively
but also quantitatively. The threshold for hyperon forma-
tion is in fact restricted to the narrower range [2–2.5] nsat.
The softening of the equation of state brings the max-
imum mass of the star from 2–2.5 M¯ for a npe star
down to 1.4–1.6 M¯ for a npYe star. This has even led to
some speculation (see, e.g., [27]) whether the clustering of
known pulsar masses around the value 1.4 M¯ would be
due to this feature of the equation of state rather than to
the circumstances of their formation in a supernova. The
metastability of hot stars with trapped neutrinos when
hyperons are present, as discussed, e.g., in [32], is also
recovered.

The selected sets are also applied in a companion pa-
per [16] to the calculation of the scattering rate of neu-
trinos in baryonic matter, for a finite temperature and
non-vanishing number of trapped neutrinos. The possibil-
ity to access the properties of polarized matter was a fur-
ther motivation to this work: It was necessary to be able
to calculate the Landau parameters in the spin S = 1
channel, since the axial channel is dominant for neutrino
scattering.

As a protoneutron star is formed in a supernova explo-
sion, the high amount of neutrinos trapped in its interior
by high temperature and density gradually diffuse out in
the first 50 seconds as the star cools. Hyperons begin to
appear in the course of this deleptonization process and
could affect the tail of the neutrino signal. Modern detec-
tors would now be able to detect this effect. The idea was
explored by Reddy et al. [33] in the mean-field approxi-
mation. The calculation is performed in the random phase
approximation in [16]. The parameter sets selected in the
present work predict a non-negligible hyperon content for
t ≥ 20 s after the collapse (see figs. 2 and 3 of [16]).

Let us examine again the main shortcomings of the
present model and the way it could be improved in future
work.

i) The Skyrme interaction has long been known for dis-
playing a series of problems at high density: behavior of
asymmetry energy, onset of ferromagnetism, causality, . . . .

While we were able to avoid these problems by carefully
passing the existing parametrizations through the crib
of these various constraints, we cannot avoid the feeling
that we are pushing the Skyrme model much beyond its
capacity. More refined models do not have these prob-
lems; for example, the non-relativistic Brueckner-Hartree-
Fock calculations do not show a ferromagnetic transi-
tion. A possible answer to this point would be to develop
a parametrization of Brueckner-Hartree-Fock calculations
in terms of an energy density functional for polarized mat-
ter with a non-vanishing hyperonic content. Some steps
have already been performed in this direction by Vidaña
et al. These authors studied the polarized neutron-proton
matter system [12] and concluded to the absence of a
ferromagnetic transition. They also obtained the equa-
tion of state of unpolarized npY matter in β equilibrium
and applied it to the calculation of neutron star mass ra-
dius relation [27] and parametrized the neutron-proton-
Lambda system [34] for applications to hypernuclei. The
parametrization of Brueckner-Hartree-Fock results with
modern Nijmegen potentials for the full polarized npΛΣ
is currently under way [35].

ii) We have seen that the effect of the ΛΛ force
at high density is very important, whereas the descrip-
tion of the hyperon-hyperon interaction in phenomeno-
logical formalisms is still very poor. Brueckner-Hartree-
Fock calculations offer a coherent framework to calculate
the hyperon-hyperon interaction in medium starting from
bare potentials such as the Nijmegen one known from scat-
tering data of free particles, and then cross-checking the
results with the data on double hypernuclei. This has ac-
tually been performed with the Nijmegen NSC97e model,
e.g., in [36].

iii) Relativistic effects can be expected to play an im-
portant role at high density. Many of the problems encoun-
tered in the Skyrme parametrization mentioned above
in this paragraph (behavior of asymmetry energy, on-
set of ferromagnetism and causality) are not present in
the relativistic formulation. Relativistic mean-field mod-
els with hyperons (see, e.g., [37]) are so well under control
that they have made their way into textbooks [38]. The
parametrizations of the present work obviously do not pre-
tend to compete with this line of work at the mean-field
level; rather, they were developed in view of their appli-
cation at the RPA level where they give rise to simpler
Dyson equations than in the relativistic formulation. The
relativistic extension at RPA level to hyperons would be
completely straightforward but somewhat unwieldy.

While it could be argued that the physical founda-
tions of the Skyrme model are disputable when applied
in the context of neutron stars, the parametrizations pre-
sented in this paper should rather be considered as reliable
phenomenological models for run-of-the-mill calculations.
Once the orders of magnitude of physical effects are ascer-
tained with this simple model, they can be refined by ap-
plying more complicated Brueckner-Hartree-Fock or/and
relativistic models.
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Appendix A.

Besides the the usual parameterization of the nucleon-
nucleon interaction

VNN (r1 − r2) = t0 (1 + x0Pσ)δ(r1 − r2)

+
1

2
t1 (1 + x1Pσ)

[

k′2 δ(r1 − r2) + δ(r1 − r2) k
2
]

+t2 (1 + x2Pσ)k
′ δ(r1 − r2) k

+
1

6
t3 (1 + x3Pσ) ρ

α
N

(

r1 + r2
2

)

δ(r1 − r2), (A.1)

we use the following Lambda-nucleon and Lambda-
Lambda potentials [4,5]:

VNΛ(rN − rΛ) = u0 (1 + y0Pσ)δ(rN − rΛ)

+
1

2
u1

[

k′2 δ(rN − rΛ) + δ(rN − rΛ) k
2
]

+u2 k
′ δ(rN − rΛ) k +

3

8
u3 (1 + y3Pσ)

×ρβN

(

rN + rΛ
2

)

δ(rN − rΛ) , (A.2)

VΛΛ(r1 − r2) = λ0δ(r1 − r2)

+
1

2
λ1

[

k′2 δ(r1 − r2) + δ(r1 − r2) k
2
]

+λ2 k
′ δ(r1 − r2) k + λ3 ρΛρ

γ
N (A.3)

(we haved dropped in these expressions the spin-orbit
terms which are not used in this paper). We obtain the
energy density in homogeneous matter in the usual way.
In spin saturated npΛ matter, the functional reads:

E = 〈ψ |H |ψ〉 = ENN + ENΛ + EΛΛ ,

ENN =
~

2

2mN
τN

+
t0
2

[

(

1 +
x0

2

)

ρ2
N −

(

1

2
+ x0

)

(ρ2
n + ρ2

p)

]

+
t3
12
ραN

[

(

1 +
x3

2

)

ρ2
N −

(

1

2
+ x3

)

(ρ2
n + ρ2

p)

]

+
1

8
[t1(2 + x1) + t2(2 + x2)] ρNτN

−
1

8
[t1(2x1+1)−t2(2x2+1)] (ρnτn+ρpτp) , (A.4)

ENΛ = u0

(

1 +
y0
2

)

ρNρΛ +
3

8
u3 ρ

β+1
N ρΛ

(

1 +
y3
2

)

+
1

8
[u1(2+y1)+u2(2+y2)] (ρNτΛ+ρΛτN ) , (A.5)

EΛΛ =
~

2

2mΛ
τΛ +

λ0

4
ρ2
Λ +

1

8
(λ1 + 3λ2) ρΛτΛ +

λ3

4
ρ2
Λρ

γ
N

(A.6)

with ρN = ρn + ρp, τN = τn + τp. At T = 0 we have
τi = (3/5) ρik

2
Fi and ρi = k3

Fi/(3π
2). At T 6= 0 these ex-

pressions should be replaced by Fermi integrals, see sect. 7.
At T = 0 we obtain the chemical potentials

µn =
∂E

∂ρn
=

~
2

2m∗n
k2
Fn + Un(ρi, τi) ,

Un(ρi, τi) =
t0
2
[ρn(1− x0) + ρp(2 + x0)]

+
t3
24
ρα−1
N

[

ρ2
n {(2 + α)(1− x3)}+ ρ2

p{2 (2 + x3)

+α(1− x3)}+ 2ρnρp {3 + α(2 + x3)}

]

+
1

8
[t1(1− x1) + 3t2(1 + x2)] τn

+
1

8
[t1(2 + x1) + t2(2 + x2)] τp +

λ3

4
γρ2

Λρ
γ−1
N

+u0

(

1 +
y0
2

)

ρΛ +
3

8
u3(β + 1)

(

1 +
y3
2

)

ρβNρΛ

+
1

8
[u1(2 + y1) + u2(2 + y2)] τΛ (A.7)

(the chemical potential for the proton µp can be obtained
from µn by interchanging the indices n and p) and

µΛ =
∂E

∂ρΛ
=

~
2

2m∗Λ
k2
FΛ ++UΛ(ρi, τi) ,

UΛ(ρi, τi) =
λ0

2
ρΛ +

λ3

2
ργNρΛ +

1

8
(λ1 + 3λ2)τΛ

+u0

(

1 +
y0
2

)

ρN +
3

8
u3

(

1 +
y3
2

)

ρβ+1
N

+
1

8
[u1(2 + y1) + u2(2 + y2)]τN . (A.8)

The effective masses are given by

~
2

2m∗n
=

~
2

2mN
+

1

8
[t1(2 + x1) + t2(2 + x2)] ρN

−
1

8
[t1(2x1 + 1)− t2(2x2 + 1)] ρn

+
1

8
[u1(2 + y1) + u2(2 + y2)] ρΛ (A.9)

(the effective mass of the proton follows from replacing ρn
by ρp in this expression) and

~
2

2m∗Λ
=

~
2

2mΛ
+

1

8
[λ1 + 3λ2] ρΛ

+
1

8
[u1(2 + y1) + u2(2 + y2)] ρN . (A.10)

For deriving the Landau parameters we will
also need the polarized energy functional E(ρn↑, ρn↓,
ρp↑, ρp↓, ρΛ↑, ρΛ↓). We do not reproduce this somewhat
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lengthy expression here, but note that it coincides for np
matter with the functional given by Bender et al. [39].

The Landau parameters in the monopolar approxima-
tion ` = 0 can be calculated in the following way. We
first take the derivative of the single-particle energies (or,
equivalently, the second functional derivative of the energy
density with respect to occupation numbers ρi(k)):

fτ1σ1τ2σ2
:=

(

dUτ1σ1
(k)

dρτ2σ2

)

|k=kFτ1σ1

; (A.11)

fτ1σ1τ2σ2
= fτ2σ2τ1σ1

, τ ∈ {n, p, Λ} , σ ∈ {↑, ↓} .

In the Skyrme model the single-particle energies Uτσ(k)
are quadratic in the momentum k:

Uτσ(k) := Uτσ +
~

2

m∗τσ
k2 (A.12)

and related to the chemical potentials in polarized matter:

µτσ :=

(

dE

dρτσ

)

|ρ(τ ′σ′ 6=τσ)=cst

=

Uτσ +
~

2

m∗τσ
k2
Fτσ = Uτσ(kFτσ) (A.13)

with ρτσ = k3
Fτσ/(6π

2) at T = 0.

The Landau parameters in the spin S = 0 channel are
obtained from

fτ1τ2 :=
1

4
[fτ1↑τ2↑ + fτ1↓τ2↓ + fτ1↑τ2↓ + fτ1↓τ2↑]|unpolarized

(A.14)
and in the spin S = 1 channel from

gτ1τ2 :=
1

4
[fτ1↑τ2↑ + fτ1↓τ2↓−fτ1↑τ2↓−fτ1↓τ2↑]|unpolarized .

(A.15)
The fτ1τ2 are related to usual thermodynamical quantities,
for example the compressibility and the asymmetry energy

K =
3k2

F

m∗N
(1 + F0) , aasym =

k2
F

6m∗N
(1 + F ′0) (A.16)

with kF = kFn = kFp , fnn = fpp ,

f0 =
fpp + fnp

2
, f ′0 =

fpp − fnp
2

,

F0 = N0 f0 , F ′0 = N0 f
′
0 , N0 =

2m∗NkF
π2

in symmetric nuclear matter.
The gτ1τ2 are related to the magnetic susceptibilities

and are used to form the ferromagnetic criterion (eqs. (11)-
(13))

Their explicit expressions are

In the spin S = 0 channel:

fnn =
1

2
t0(1− x0) +

1

12
t3ρ

α
N (1− x3) +

1

3
αt3ρ

α−1
N

×

[

(

1 +
x3

2

)

ρN −

(

1

2
+ x3

)

ρn

]

+
1

12
α(α− 1)

×t3ρ
α−2
N

[

(

1 +
x3

2

)

ρ2
N −

(

1

2
+ x3

)

(ρ2
n + ρ2

p)

]

+
1

4
[t1(1− x1) + 3t2(1 + x2)] k

2
Fn

+
3

8
u3

(

1 +
y3
2

)

β(β + 1)ρβ−1
N ρΛ

+
1

4
λ3γ(γ − 1)ργ−2

N ρ2
Λ , (A.17)

fnp = t0

(

1 +
x0

2

)

+
1

6
t3ρ

α
N

(

1 +
x3

2

)

+
1

4
αt3ρ

α
N +

1

12
α(α− 1)

×t3ρ
α−2
N

[

(

1 +
x3

2

)

ρ2
N −

(

1

2
+ x3

)

(ρ2
n + ρ2

p)

]

+
1

4

[

t1

(

1 +
x1

2

)

+ t2

(

1 +
x2

2

)]

(k2
Fn + k2

Fp)

+
3

8
u3

(

1 +
y3
2

)

β(β + 1)ρβ−1
N ρΛ

+
1

4
λ3γ(γ − 1)ργ−2

N ρ2
Λ , (A.18)

fpp =
1

2
t0(1− x0) +

1

12
t3ρ

α
N (1− x3) +

1

3
αt3ρ

α−1
N

×

[

(

1 +
x3

2

)

ρN −

(

1

2
+ x3

)

ρp

]

+
1

12
α(α− 1)

×t3ρ
α−2
N

[

(

1 +
x3

2

)

ρ2
N −

(

1

2
+ x3

)

(ρ2
n + ρ2

p)

]

+
1

4
[t1(1− x1) + 3t2(1 + x2)] k

2
Fp

+
3

8
u3

(

1 +
y3
2

)

β(β + 1)ρβ−1
N ρΛ

+
1

4
λ3γ(γ − 1)ργ−2

N ρ2
Λ , (A.19)

fnΛ =
1

2
u0(2 + y0) +

3

16
u3(2 + y3)(1 + β)ρβN

+
1

8
[u1(2 + y1) + u2(2 + y2)] (k

2
FΛ + k2

Fn)

+
1

2
λ3γρ

γ−1
N ρΛ , (A.20)

fpΛ =
1

2
u0(2 + y0) +

3

16
u3(2 + y3)(1 + β)ρβN

+
1

8
[u1(2 + y1) + u2(2 + y2)] (k

2
FΛ + k2

Fp)

+
1

2
λ3γρ

γ−1
N ρΛ , (A.21)

fΛΛ =
1

2
λ0 +

1

2
λ3ρ

γ
N +

1

4
[λ1 + 3λ2] k

2
FΛ . (A.22)
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In the spin S = 1 channel:

gnn =
1

2
t0(x0 − 1) +

1

12
t3ρ

α
N (x3 − 1)

+
1

4
[t1(x1 − 1) + t2(1 + x2)] k

2
Fn , (A.23)

gnp =
1

2
t0x0 +

1

12
t3x3ρ

α
N

+
1

8
[t1x1 + t2x2] (k

2
Fn + k2

Fp) , (A.24)

gpp =
1

2
t0(x0 − 1) +

1

12
t3ρ

α
N (x3 − 1)

+
1

4
[t1(x1 − 1) + t2(1 + x2)] k

2
Fp , (A.25)

gnΛ =
1

2
u0y0 +

3

16
u3y3ρ

β
N

+
1

8
[u1y1 + u2y2] (k

2
FΛ + k2

Fn) , (A.26)

gpΛ =
1

2
u0y0 +

3

16
u3y3ρ

β
N

+
1

8
[u1y1 + u2y2] (k

2
FΛ + k2

Fp) , (A.27)

gΛΛ = −
1

2
λ0 −

1

2
λ3ρ

γ
N +

1

4
[−λ1 + λ2] k

2
FΛ . (A.28)

In the limit where hyperons are absent, these expres-
sions coincide with those of Hernández et al. [40].
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